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SUMMARY

The objective of this task was to improve and extend the use-
fulness of the GTD-MM technique and to determine the limitations of
the method. The GTD-MM technique is a method which combines two ap-
plications oriented theories in electromagnetic theory, namely the
geometrical theory of diffraction (GTD) and the method of moments (MM).
As such, the GTD-MM technique is one of several different methods
known as a hybrid technique.

The technical problems addressed in this report are: (1) to over-
come certain restrictions in the original GTD-MM work and, (2) to
apply the resulting improved formulation to a three-dimensional problem,
that of calculating the radar crosssection of a three-sided pyramid.
Results were obtained which compared very well with experimental meas-
urements. The results were calculated using a medium sized digital
computer and modest amounts of CPU time.

One of the limitations of the GTD-MM technique discussed in the
present work is the need for an a priori knowledge of the form of
the current in the GTD region of the problem. The work in this report
suggests that this difficulty may in some cases by overcome by using
a suitable series expansion of the current. Future research should
examine this approach from a more general viewpoint and should also
be directed toward the application of the method to geometries of
a three-dimensional nature for which the diffraction coefficient is
unknown.

In general, hybrid techniques hold good promise for eventually
being able to treat radar scattering problems of quite general and
detailed shape. Partly for this reason, a hybrid technique such as
the one reported here, is an important research problem.
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5




b o

11

111

v

v

1)
REFERENCES

TABLE OF CONTENTS

INTRODUCTION

INFINITE WEDGE FORMULATION
INFINITE WEDGE RESULTS
THREE-SIDED PYRAMID FORMULATION
THREE-SIDED PYRAMID RESULTS
SOME OBSERVATIONS

Page

17
22
’8
30




1. INTRODUCTION
In recent years the geometrical theory of diffraction (GTD), or

one of its improved modern versions such as the uniform theory of dif-
fraction (UTD), has become one of the more useful methods for finding

solutions to antenna and scattering problems [1]. The applications of
diffraction theories are, however, limited to geometries for which the
diffraction coefficient is known.

Recently a technique [2] has been developed for extending the
use of the GTD by the method of moments (MM) [3]. In this extended
GTD-MM technique the diffraction coefficient is treated as an unknown,
thereby permitting a larger class of problems to be treated with the
GTD. This technique [2] required special consideration for those cases
where the incident ray was nearly tangent to one of the faces of the
wedge and the results where dependent upon the location of the match
points used. In this paper these difficulties are overcome by using
a series of three terms based on approximate expressions for the Fresnel
intearal. Thus, a purpose of this paper is to show that accurate results
are obtained with the three term series for all incidence angles, partic-
ularly for grazing incidence, and that these results are independent
of the location of the match points.

N Previously, the (improved) extended GTD-MM technique has been
applied to 2-dimensional problems. In this paper we will use the ex-
tended GTD-MM technique to treat a 3-dimensional geometry, the three
sided pyramid. Thus, a second purpose of this paper is to demonstrate
the applicability and l1imitations of the extended GTD-MM technique to
3-dimensional geometries. As such it represents a first step in ap-
‘plying the extended GTD-MM technique to 3-dimensional problems.
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II.  INFINITE WEDGE FORMULATION

The infinite wedge is, of course, a canonical (2-dimensional)
problem in the GTD and UTD. It is used in this paper merely as a hasic
geometry to test the methods that follow. That is, the wedge diffraction
coefficient is treated as an unknown and solved for numerically. Once
the numerical diffraction coefficient is obtained, it may then be com-
pared with the known UTD diffraction coefficient or with the classical
(exact) theory solution of the wedge problem {4] to validate the numeri-
cal result.

Consider Figure 1 which shows the surface of a wedge divided into
4_1
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Figure 1. Wedge diffraction geometry used in GTD-MM solution.

two regions. The basic approach here is to use a pulse basis moment
method representation for the current near the diffracting edge (i.e.,
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tcomiin i s




MM region), and GTD current forms outside the moment method region.
Thus, the current in the GTD region is given by

pLi LI P & (1)

where U], Jr and'Jd are the currents associated with the incident, reflected
and diffracted fields respectively.

The currents in the MM region are found using the magnetic field
integral equation

NF)=ﬁxﬁi-ﬁx jyp J(r*) x vG (p,p') ds' . (2)
WEDGE
SURFACE

The current may be represented by the components :ﬂ in the xy plane
and Jz in the xz or yz plane as suggested by Figure 2. Thus,

Jr') = T 00y ¢ Jplx,yt) o (3)

31 (p))

-
oy
©.
———
‘\

Figure 2. Current of a point p' used in
magnetic integral equation.

Using Equation (3) in Equation (2) we obtain
Ip(e) = ny x Hy(p) - ﬁp X I'J'T(o') x ¥r G(p,0') dc' (4)
c

3




and

J,(0) = Ny X FI} - ﬁp X l'Jz x Yr G(p,p') ds’

- 3k, ﬁp X é(ﬂf G(p,p') dc' (5)

where G(p,p') is the two-dimensional Green's function written in terms
(2)

of the Hankel function Ho as
' -]___ (2) ey
G(p,0') = 73 Hy"' (kp[-8' D), (6)

where kT=k sinBo. The del operator is given by

= = , A
Vo=V +V =V +2 - (7)

and the currents are related to the magnetic field by

:‘ Ué =N, x Hy (8)
A;f and ;
F . -
3 Jp =y xH, (9)

In the extended GTD-MM technique it is necessary to assume the form
of the diffracted current Ud in Equation (1). In Reference 2, Burn;?az; :
et. al. took the diffracted current to be proportional to e'Jkpl/B; L9
This is satisfactory except when the shadow boundary of the incident |
field is near one wall of the wedge as the authors point out. In this
special case they proposed the series

- -] -'kp
M- T olm £F 10
| ok ()" o




and found that the first two terms gave good results but that the solu-
tion was "somewhat dependent on the locations of the sample (match)
points". The reason they [2] had this sensitivity to match point lo-
cation was that the series in Equation (10) does not adequately repre-
sent the current in the case of grazing incidence. That is to say,

an a priori knowledge of the form of the current was not available in
this instance.

To overcome the difficulties mentioned above, let us examine the
wedge diffraction coefficient in its Fresnel integral form. (We do
this merely to gain sime insight into what the form of the current really
should be. We will not use any of the well-known diffraction coeffi~
cient expressions in the numerical calculations which follow later.)
Consider the wedage in Fiqure 3a. If the incident ray is in region I,
then there are two reflected ravys Ro and R1 as shown. The diffracted
current in the x wall can be viewed as heing generated by three rays
as shown in Figure 3b., Thus the diffracted current on each wall will
be the summation of the three currents associated with the three rays
where incidence angles are listed below

xz_plane yz plane
1. ) 1. 360 =¢-v
2. 360-¢ 2. o=y _
3.  360-¢-2y 3. b4y :

We know that each of the three diffracted currents may be written in
Fresnel integral form. Thus, for the wall in the xz plane we have:

PRCTCUTNY

+jk pcos§ @ 2
L D,(¢) e T J e 3" 4 an

1x
/kTp(l-cos¢)




Figure 3. Wedge reflection geometry. -




+jk4pCoSe @ 2
d T° J o3t 4 (12)

Joy Dx(360-¢) e

[kTp(l-cos¢)

+jkqpcos(¢+2y) ® 12
= D,(360-¢-2y) e e dr . (13)

jkTo(1+cos(¢+2v)

<
Q.
t

3x

Similar expressions can he written for the other wall of the wedge.

From [5] it can be shown that a Fresnel inteqral may he approxi-
mated as follows:

©0

2
-9T v N
J ed 4 = J[g.(ao + a3, if fa»0 (14)
iy
and
K 2 2
J e 3T gr = |2 ;T if fa >> 1 (15)
Jo

where a5 and a, are coefficients independent of o which may be evalu-

ated from [5].

If none of the 3 rays is near the x axis, then Equation (15) ap-
plies and we have

-jkx
d_d . d . 4~ el
J J]x sz + J3x = Dx I (16)
as we would expect. On the other hand, if any one of the three rays

is near the x-axis, then either % ka(l+cos¢1<<1 due to ¢ beina close

to 180°, or < ka(1+cos(¢+?y)Y<<1 due to (+2y) heina close to 180°,

In this case, since some of the rays are near grazing and some are not,

both Equations (14) and (15) apply and we must write




L R T T L T
T orreTT—— Ao

W%‘Yﬂ’r'"}:-’y A S el s s e - . o - L T - o
4 —jka
_ 4 d d _ (1) e
Jx - Jlx + J2x + J3x - Dx Ix +
-jk+x -jkex
+0{0) ¢ T4 oM T (17)

The superscript on the diffraction coefficients is associated with the
value of n for

W

We could reach the same conclusion given by Equation (17) by ex-
amining the Kouyoumjian-Pathak diffraction coefficient [1] or the spectral
Theory of Diffraction work of Mittra, et al. [6]. For example, in the
former, for ¢=0, a+(-¢')=a'(¢')=1+cos¢' and the four terms in the dif-
fraction coefficient reduce to three. Each of those three terms may
be identified with one of the terms in Equation (17).

Equation (17) is valid for all values of x except near the source
of diffraction where the form of the current is not known. Therefore
Equation (17) applies when x > minimum value of either.oﬁ or o; where,
from the conditions discussed between Equations (16) and (17), we obtain

X D)
py = —
! 4(1+cos ) (18)
and
X _ A
P2 * TTvcos(o2)] (19
Thus, the approximation of the total current on the x-axis will be
§ N
mzl a; P(x-xm) , 0<x<min(o¥.p;)
-

i =Jkrx
, dadte §opm T

n=-1 X

\ (fx " ’

where P(x-xm) is a pulse function with complex coefficient a.

min(p?,o;)<x<m (20)




The same procedure can be used to write an expression for the
current on the other face of the wedge. Then, following the same pro-
cedure as given in [2] we can solve for the unknown pulse weights an

and the unknown diffraction coefficients Din) and D§"), except that
there will be 3 match points on each face of the wedge in the GTD region
instead of only one or two as in [2]. Therefore the system of equations
to be solved will be at most of order 2N+6 where N will typically be

a small number (i.e., 2 or 3 or 4),

I1I. INFINITE WEDGE RESULTS

Results have been run for a variety of incidence angles from qrazing
to normal incidence and for wedges with a variety of interior wedge
angles. In all cases the three term series in Equation (17) yields
results which are in excellent agreement with the exact classical theory
[ 4] wWe will discuss one typical case here. Consider Figure 4 which
shows a plane wave incident on a 30° wedge with the electric field
perpendicular to the edge of the wedge. Two results are shown, one
when the wave is 5° from grazing upon the y' wall and the other when
the wave is 5° from grazing upon the x wall. Both results are in per-
fect agreement with the exact theory.

The results in Figure 4 could have been generated by using fewer
than 6 unknowns in the two GTD regions. That is, in the ¢=155° case
where no rays are close to tangency with the x wall, the Dio) and DL])
terms could be omitted. Indeed the computer print out shows them to
be relatively unexcited. Similarly, for the $=175% case the Dﬁo) and
05'1) terms could be omitted since no rays are close to tangency with
the y' wall, Conversely, if any of the essential terms are omitted,
jncorrect results will be obtained for the currents on the faces of

the wedge for those cases where there are rays close to tangency with
one of the faces of the wedge [7]. This fact is well-illustrated by
the results in Figures 5 and 6. In Figure S a ray is exactly grazing
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—— EXACT SOLUTION

y OR
(a) (n)
90° D,‘ #0,0y #O_‘
1.5 {0)
— X cooD, =0
(1) ¢ n(O)
180° ooeby x -0
\\ oooooooooooooooOOoooooOoo
I.O—QA oo"
s
11 %ot 0aaq
o oo Y Y VY Y Y Y Y Y Y Y YV Y Y Y Y Y Y.Y-Y-Y-Y-X-Y-Y
(-]
(-]
0.5 %
’rr_ ] 1 ] |
180 R '
90}
@
w
w
x
o
o of—
S
2 _gof
- ¢
-180 ] _ ! |
o) | 2 3 4 S
X ( WAVELENGTHS )
Figure 5. Current along x-wall for various combinations
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of coefficients compared to exact solution.
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EXACT SOLUTION

y
.0 ———— OR —
' 90° | oi™#0, 0\ ¢ 0
o 0 o D(yo)'o
.Yy
11 0.5
o 1 | 1 !
180
~ 90—
7]
W 1
w
x
O
a
~ OF
> ;
o ]
4 :
<
-90|
-180 ] ] ] 1
o | 2 3 4 5 !
X ( WAVELENGTHS )
Figure 6. Current along y-wall for various combination of : 1
coefficients compared to exact solution.
13 ;




‘f upon the x wall of a wedge. Exact agreement is obtained when all terms
i are used. However, if one or both of Dio) and Di’l\ are zero, the in-
correct current magnitude is obtained although the phase is unaffected.
Figure A shows a ray exactly grazing upon the y wall in the "opposite"
direction. Similar ohservations to those made for Fiqure 5 can be made.
for Fiqure 6.

For the results generated ahove, typically the three match points

were located hetween a distance of 12 and 5) from the wedge edage for

a grazing incidence case and between 0.5)1 and 5) for non-qrazing inci-

dence cases. An objection has been raised [8] that in the grazing in-

cidence cases, the current would grow without limit due to the Dil)
term. Further investigation beyond [7] showed that this does not occur
out to and somewhat beyond the location of the most distant match point,
even when it is located several hundred wavelengths from the wedge edge.
Such a large distance is adequate for most problems of interest and
much more than adequate for the pyramid probliem in the next section.
It should be noted that a slow rise in the current in a grazing inci-
dence case (e.g. Figure 4, ¢9=1757 case) is natural since the wave will
continually reinforce the current along the wall until some saturation
point is reached. Indeed it is the 0(1) term that permits this physical

'l phenomena to occur in the calculations even though the numerical value
of Dil) is always very small,

Figure 7 illustrates the behavior of the three coefficients with
incidence angle for a 30° wedge. Note that Di]) is always the smallest
coefficient except when ¢Q180°, the grazing incidence case. In this
case the Dio) coefficient dominates as expected. Note too that when
¢ 1is not near 180°, the Di"l) coefficient dominates as one would ex-
pect, and that the Dil) coefficient is from two to four orders of mag-

nitude lower. . 4
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Variation of the numerical coefficient phase




In this paper, the extent of the MM region is 1/2. A larger size
(e.g., 1) can be used if the number of expansion functions is propor-
tionately increased.

And finally, we should remark that although the results in this
section show the three term series in Equation (17) to be sufficient
in all cases, one could possibly concefve of a series with more terms.
However, such a series may be divergent as is sometimes the case with
such asymptotic solutions.

The results in this section show that the three term series in
Equation (17) is certainly a correct one to use. In this problem we
were fortunate in having considerable knowledge about the known asymptotic
solution for the problem which we could look at to deduce the correct
series expression for the current. However, in the general useage of
the GTD-MM technique this would probably not be true which is one of
the points of this paper.

IV. THREE-SIDED PYRAMID FORMULATION

For the problem of scattering by a pyramid (i.e. a 3-dimensional
problem) as treated in this paper, each face of the four faces of the
3-sided pyramid (i.e. three sides plus base) is composed of two regions,
a GTD region and a MM region along each of the three edges of any one
face as illustrated by Fiqure 5. The current distribution on the sur-
faces is found hy solving the 2-dimensional wedge diffraction problem
once for each wedge or a total of six times for the entire problem. | i
Thus the current in the GTD region is the superposition of the diffracted 1
currents from the three 2-dimensional solutions applicable to a particu-
lar face plus the currents due to the incident and reflected fields.

For example, the current in Figure 6 at point M in a GTD reqion is the

summation of the five currents J?, Jg, Jg, Ji and J". The first three

currents are due to diffraction from edges 1, 2 and 4 respectively while
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Figure 8. Pyramid faces with GTD and MM regions.

J' and Jr are due to the incident and reflected fields as discussed
in Section II. i

The current along the edges of each face is obtained from the
corresponding 2-dimensional wedge diffraction solution (MM part) plus
the diffracted currents from the other 2 edges plus, of course, the
currents associated with the incident and reflected fields.

1 To obtain the scattered field we use the radiation integral for i
the current in the MM reqion as well as for the current in the GTD re-
aion. This is necessary hecause in the method used here, we can define {
the "numerical diffraction coefficients" only on the faces of the ohject i
fi.e., pyramid) and not as a function of the angle of the ohservation ) i
point. Thus, it is necessary to use the current rather than use ray

ey

tracing as is done in the usual use of the GTD.
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] Figure 9. Geometry for one face of the triargular pyramid.




The solution for the current obtained in the manner described
above constitutes a first step in the solution process that is probably
?, sufficient for most backscatter problems. A refinement (i.e. a second
‘ step) will be discussed later. Note that the solution neglects multiple
diffractions from the edges and also neglects diffractions from the
three vertices on any given face. We will refer to the latter as tip
diffraction.

For bistatic scattering the effect of tip diffraction may he added
post facto to the scattered field obtained by integrating over the sur-
faces of the pyramid visible in the desired direction of the scattered
field. The tip diffracted field may be evaluated by using a tip dif-
fraction coefficient given by Keller, et al [9] which is also discussed
in [8]. The tip diffraction coefficient formula is for a plane corner
with two straight edges meeting at an angle and is of the form

- _J  (cose+cose')sins
C, ! io (cosa-cosa')(cosb-cosb™) (21)
where a and b are the angles between the incident field and the two
edges at the corner; a' and b' are the angles between the diffracted
field at the two edges; 6 and 8' are the angles between the normal to

S D™, A AN Al

the plane of the corner and the incident and diffracted rays; and &

is the angle between the two edges. The perpendicular symbol in C,
denotes that only that transverse component of the incident electric
field which is not parallel to the plane of the corner is used to deter-
mine the tip diffracted field. The fact that the vertices in this
problem do not constitute plane corners is ignored in applying Equation
f21) since it may be arqued that the non-plane nature of the vertices
is a neqligible deviation for the tips on the pyramid. It will be seen
in the next section that inclusion of the tip diffracted field does
noticeably and favorably raise the level of the radar cross section
results at most aspect angles but the scattering "pattern" is little
changed by the tip diffrac’ed field.
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Unfortunately there is at present no satisfactory vector electro-
magnetic diffraction coefficient available for corner diffraction.
We used Keller's formula for the transverse component of the incident
electric field without first investigating the limitations of the formu-
la itself, if in fact there are any. Keller's formula gave quite good
results over a wide range of aspect angles. There is another formula
in 11 in Figures 118-120 due to the work of Felsen. This tip dif-
fraction formula is for cones and is restricted to small incidence anqles
with respect to the axis of the cone.

The tip diffraction contribution may be included in a different
or alternative manner. Using the tip diffraction coefficient in Equa-
tion (21) one can obtain a tip diffracted current contribution to the

current in the GTD region. Thus, at point M in Figure 9 there could

d

d d d t12»
Jt24 and Jtl4 where, for example, Jt]2 is the diffracted current from

also be shown three tip diffracted rays giving rise to currents J

the tip formed by edges 1 and 2. Next,one considers the current on ]
the surface in the immediate vicinity of each of the twelve tips to

be unknown. Usirg the now known current on each face (i.e. both in

the MM and GTD regions), one can generate an incident field at each

of the twelve tip reqions and employ Equation (2) to solve for the

3 current at and near each tip. This is the second step in solution

- mentioned earlier in this section but not discussed in [12]. If this
= step is carried out accurately, the same scattered field will be ob-
tained as when the tip diffracted field is added on post facto. How-
ever, including the tip diffraction contribution in the current permits
a more accurate representation of the current than that obtained in

the first step. The second step described here is used in the next
section to obtain the plots of the current distribution.
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V. THREE-SIDED PYRAMID RESULTS

In the results which follow for the 3-dimensional pyramid problem,
the edges numbered 1, 2, and 3 in Figure 9 are all of length 9.144x
and make an angle of 15% with the z-axis.

Using the second step discussed in the previous section, the
magnitude of the current distribution was obtained for the case where
a plane wave was normally incident upon edge 4 (see Figure 9) with the
magnetic field parallel to this edge. The current distributions are
shown on the three faces in Figures 10 and 11 and on the base in Figure
12. Although there was no reasonable way to verify the degree of ac-
curacy of the current distributions, they appear reasonahle, have the
anticipated behavior in the tip regions, and do produce radar cross
section results that agree well with experimental measurements.

The number of pulse expression functions used in the MM region
was N=5. The current discontinuity at the boundary between the MM and
GTD regions is quite small, too small to be shown in the figures.

Figures 13 and 14 show bistatic radar cross section results when
the pyramid is rotated about the z-axis with the incident wave parallel
to the xy plane. Figure 13 is for the case where the E-field is parallel
to the xy plane (horizontal polarization) and Figure 14 is for the case
where the E-field is parallel to the z-axis (vertical polarization).
Results are shown both with and without tip diffraction. It is apparent
that the inclusion of tip diffraction improves the results at most aspect
angles and in fact does bring the results into very close agreement
with measurements made in the Ohio State University anechoic chamber.

The agreement between the calculations and measurements tends to validate
at least the gross accuracy with which the current distribution has

been obtained. Further RCS results may be found in [12]. Clearly we
could have obtained these RCS results solely using the UTD and Equation
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FACE (456)

on face 456, the pyramid base.

Figure 12, Magnitude of the surface current
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(21) but our purpose here has been to apply the extended GTD-MM tech-
nique to a 3-dimensional problem,

VI.  SOME OBSERVATIONS

The GTD-MM technique permits one to solve for "unknown" diffraction
coefficients if one knows the form of the current in the GTD region.
In Section I1 we saw for the wedge that the obvious assumption that
the current in the GTD region varies as (p)-1/2 js invalid in the grazing
incidence case. The assumption was corrected to include two other terms
which were suggested hv the mathematics associated with the known Fresnel
integral form of the diffraction coefficient. In retrospect we might
have bheen able to suggest those two additional terms from the physics
of the problem. 1In any case the work in Section II does illustrate
the need for good a priori knowledge of the form of the current in the
GTD region if the unknown diffraction coefficient is to be correctly
determined. In the future treatment of geometries for which the dif-
fraction coefficient is truly unknown, the need for a priori knowledge
of the form of the current in the GTD region may prove to be a limitation
on the use of the method in certain cases. In fact current work on
the vertex diffraction problem indicates the often stated assumption
that the current varies as (r)'] is incorrect near the vertex. Never-
theless, the GTD-MM technique does offer a useful procedure for numerically
obtaining diffraction coefficients whose analytical form is unknown,

The application of the GTD-MM technique in Section IV to a 3-dimen-
sional problem was based, for the most part, on a superposition of
?-dimensional sub-problems. It would not have been feasible to have
solved for all the MM currents on the pvramid simultaneously due to
the large matrix that would have resulted. Thus, a superposition of
?-dimensional sub-problems was essential. It may be noted that in
[?], Burnside, et al solved the problem of a cylinder with square cross
section by solving for the MM currents along al) four edges simultaneously.
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However, that problem was 2-dimensional. If we wished to solve the
finite length cylinder of square cross section (i.e. a 3-dimensional
problem) using the GTD-MM technique, it would be necessary to proceed
in a manner essentially identical to that used for the pyramid in this
paper.

Other problems might be considered by the techniques of Section
11 and IV. For example, if the three sides of the pyramid were coated
with a dielectric material and, perhaps, the base was not, we could
1) solve the 2-dimensional problem of a wedge coated on either one or
both sides of the wedge with a dielectric using the GTD-MM technique
and 2) solve the coated or partially coated tip problem using the GTD-

MM technique, and then 3) superimpose these various 2-dimensional problems

to investigate the 3-dimensional coated pyramid problem. It is expected

that future developments in the GTD-MM technique will permit such complex

geometries to be treated.
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